A Lead-Filled G-Quadruplex: Insight into the G-Quartet's Selectivity for Pb2+ **over K**+

ORGANIC LETTERS 2000 Vol. 2, No. 21 ³²⁷⁷-**³²⁸⁰**

Frank W. Kotch, James C. Fettinger, and Jeffery T. Davis*

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742

jd140@umail.umd.edu

Received August 29, 2000

ABSTRACT

The lipophilic nucleoside, G 1, extracts Pb2⁺ **picrate from water into organic solvents to give structures based on the hydrogen-bonded G-quartet. Crystal structures indicate important differences between (G 1)8-Pb2**⁺ **and (G 1)8-K**+**. The divalent Pb2**⁺ **templates a smaller G8 cage than does K**+**, as judged by the M**−**O6 bond length, O6**−**O6 diagonal distance, and inter-tetramer separation. The more compact Pb2**⁺ **octamer correlates with NMR data indicating that N2**−**N7 hydrogen bonds in (G 1)8-Pb2**⁺ **are kinetically more stable than in (G 1)8-K**+**.**

With the increasing activity in supramolecular chemistry,¹ nucleobases have been used to construct some interesting and functional noncovalent assemblies. $2-6$ In addition to making new supramolecular architectures, lipophilic nucleobases also serve as valuable models for better understanding the factors that control structure and dynamics in duplex,7

- (3) Bell, T. W.; Hou, Z.; Zimmerman, S. C.; Thiessen, P. A. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁹⁵**, *³⁴*, 2163-2165.
- (4) Schall, O. F.; Gokel, G. W. *J. Am. Chem. Soc.* **¹⁹⁹⁴**, *¹¹⁶*, 6089- 6100.
- (5) (a) Sigel, R. K. O.; Freisenger, E.; Metzger, S.; Lippert, B. *J. Am. Chem. Soc.* **¹⁹⁹⁸**, *¹²⁰*, 12000-12007. (b) Sigel, R. K. O.; Lippert, B. *Chem.*

Commun. **¹⁹⁹⁹**, 2167-2168. (6) (a) Egholm, M.; Buchardt, O.; Nielsen, P. E.; Berg, R. H. *J. Am. Chem. Soc.* **¹⁹⁹²**, *¹¹⁴*, 1895-1897. (b) Egholm, M.; Nielsen, P. E.; Buchardt, O.; Berg, R. H. *J. Am. Chem. Soc.* **¹⁹⁹²**, *¹¹⁴*, 9677-9678.

triplex,⁸ and tetraplex^{9,10} nucleic acids. Both Gottarelli's group and our group have been studying the cation-templated self-association of lipophilic guanosine derivatives.¹⁰⁻¹² These compounds form self-assembled ionophores that bind cations with affinity and selectivity. In addition to represent-

⁽¹⁾ Reinhoudt, D. N.; Stoddart, J. F.; Ungaro, R. *Chem. Eur. J*. **1998**, *4*, ¹³⁴⁹-1351.

^{(2) (}a) Sessler, J. L.; Wang, B.; Harriman, A. *J. Am. Chem. Soc.* **1995**, *¹¹⁷*, 704-714. (b) Harriman, A.; Kubo, Y.; Sessler, J. L. *J. Am. Chem. Soc.* **¹⁹⁹²**, *¹¹⁴*, 388-390.

^{(7) (}a) Williams, N. G.; Williams, L. D.; Shaw, B. R. *J. Am. Chem. Soc.* **¹⁹⁸⁹**, *¹¹¹*, 7205-7209. (b) Williams, L. D.; Williams, N. G.; Shaw, B. R. *J. Am. Chem. Soc.* **¹⁹⁸⁹**, *¹¹²*, 829-833.

⁽⁸⁾ Zimmerman, S. C.; Schmitt, P. *J. Am. Chem. Soc.* **¹⁹⁹⁵**, *¹¹⁷*, 10769- 10770.

⁽⁹⁾ Sessler, J. L.; Sathiosatham, M.; Doerr, K.; Lynch, V.; Abboud, K. A. *Angew. Chem., Int. Ed. Engl.* **²⁰⁰⁰**, *³⁹*, 1300-1303.

^{(10) (}a) Forman, S. L.; Fettinger, J. C.; Pieraccini, S.; Gottarelli, G.; Davis, J. T. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 4060-4067. (b) Marlow, A. L.; Mezzina, E.; Spada, G. P.; Masiero, S.; Davis, J. T.; Gottarelli, G. *J. Org*. *Chem.* **¹⁹⁹⁹**, *⁶⁴*, 5116-5123.

^{(11) (}a) Gottarelli, G.; Masiero, S.; Spada, G. P. *Chem. Commun.* **1995**, ²⁵⁵⁵-2557. (b) Gottarelli, G.; Mariani, P.; Masiero, S.; Mezzina, E.; Spada, G. P.; Recanatini, M. *Hel*V*. Chim. Acta* **¹⁹⁹⁸**, *⁸¹*, 2078-2092. (c) Andrisano, V.; Gottarelli, G.; Masiero, S.; Heijne, E. H.; Pieraccini, S.; Spada, G. P. *Angew. Chem., Int. Ed.* **¹⁹⁹⁹**, *³⁸*, 2386-2388.

^{(12) (}a) Cai, M.; Marlow, A. L.; Fettinger, J. C.; Fabris, D.; Haverlock, T. J.; Moyer, B. A., Davis, J. T. *Angew. Chem., Int. Ed.* **²⁰⁰⁰**, *³⁹*, 1283- 1285. (b) Cai, M.; Sidorov, V.; Lam, Y. F.; Flowers, R. A.; Davis, J. T. *Org. Lett*. **²⁰⁰⁰**, *²*, 1665-1668. (c) Davis, J. T.; Tirumala, S.; Marlow, A. L. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 5271-5272. (d) Davis, J. T.; Tirumala, S.; Jenssen, J. R.; Radler, E.; Fabris, D. *J. Org. Chem.* **¹⁹⁹⁵**, *⁶⁰*, 4167- 4176.

ing a new approach toward ion coordination in organic solvents, our studies should also provide insight into the structural properties of higher-ordered nucleic acid aggregates. Herein, we report solid-state and solution evidence for complexation of Pb^{2+} by the lipophilic guanosine analogue G 1. The resulting $(G_1)_{8}Pb^{2+}$ octamer is a sandwich of two hydrogen-bonded G-quartets (Scheme 1).

The G-quartet is templated and stabilized by cations.¹³ In G-rich DNA, contiguous G-quartets stack to give structures known as G-quadruplexes.14 In addition to an affinity for the monovalent K^+ and Na^+ , the G-quartet also binds divalent cations such as Ba^{2+} and Sr^{2+} .^{15,16} Earlier this year, Smirnov and Shafer reported that Pb^{2+} is significantly better than K^+ at inducing G-quartet structure in a DNA oligonucleotide.17 Since Pb^{2+} ($r = 1.29$ Å) has an ionic radius similar to but smaller than that of K^+ ($r = 1.51 \text{ Å}$),¹⁸ Pb²⁺ should fit into the G_8 cage formed by two stacked G-quartets. It is also reasonable that divalent metal ion coordination might further stabilize the G-quartet's hydrogen bonds. For example, calculations predict that cation coordination to G strengthens hydrogen bonds in $G-C$ and $G-G$ base pairs.¹⁹ This polarization enhancement of hydrogen bond strength is

(19) Burda, J. V.; Spöner, J.; Leszczynski, J.; Hobza, P. *J. Phys. Chem. ^B* **¹⁹⁹⁷**, *¹⁰¹*, 9670-9677.

calculated to be greater for divalent cations than for monovalent cations.²⁰ Such polarization effects have been considered when explaining the G-quartet's monovalent cation selectivity.²¹

In addition to providing general insight into G-quartetcation interactions, studying Pb^{2+} binding to nucleobases may result in a better understanding of the molecular basis for lead's genotoxicity.²² While lead's coordination chemistry is well understood, $2³$ there are few structural details regarding binding of Pb^{2+} to nucleic acids. X-ray crystallography has shown that tRNA and RNA leadzymes have specific Pb^{2+} binding sites that utilize both nucleobase and phosphate ligands.^{24,25} Shafer's finding that Pb^{2+} promotes folding of a DNA G-quadruplex 17 focused our attention on the interaction of Pb2⁺ with the lipophilic G **1**.

The nucleoside G **1** is an excellent model compound for obtaining molecular level details about G-quartets. We recently reported a G-quadruplex crystal structure formed from G **1** and K^+ picrate.^{10a} The G-quadruplex was composed of two coaxial $(G_1)_{8}K^+$ octamers with K^+ cations sandwiched between G-quartet layers. We have now located Pb^{2+} cations within a similar G-quadruplex. Our current solidstate and solution data confirm that Pb^{2+} is better than K^+ at stabilizing the G-quadruplex.

Solid State Structure. The lipophilic G **1** extracted Pb2⁺ picrate into $CDCl₃$ from water containing a 1:2 molar ratio of PbCl₂ and K^+ picrate.²⁶ Integration of ¹H NMR signals for G **1** and picrate indicated an octameric stoichiometry. Solvent evaporation gave a solid whose elemental analysis was consistent with $(G 1)_8$ -Pb²⁺(pic)₂.²⁷ Single crystals, from CH3CN/CHCl3, had unit cell dimensions that were macromolecular: $a = 25.5691(13)$ Å, $b = 44.385(2)$ Å, and $c =$ 83.840(4) \AA ²⁸ This cell contained four G-quadruplexes, representing over 4500 non-hydrogen atoms. Each Gquadruplex was formed from two coaxial $(G_1)_{8}$ -Pb²⁺

(20) Spöner, J.; Burda, J. V.; Mejzlik, P.; Leszczynski, J.; Hobza, P. *J. Biomol. Struct. Dyn.* **¹⁹⁹⁷**, *¹⁴*, 613-628.

(21) (a) Ross, W. S.; Hardin, C. C. *J. Am. Chem. Soc.* **¹⁹⁹⁴**, *¹¹⁶*, 6070- 6080. (b) Tohl, J.; Eimer, W. *Biophys. Chem.* **¹⁹⁹⁷**, *⁶⁷*, 177-186. (c) Spackova, N.; Berger, I.; Spöner, J. *J. Am. Chem. Soc.* 1999, 121, 5519-

5534. (d) Gu, J.; Leszczynski, J. *J. Phys. Chem. A* **²⁰⁰⁰**, *¹⁰⁴*, 6308-6313. (22) For a review, see: Hartwig, A. *Environ. Health Perspect*. 1994, *¹⁰²*(S3), 45-50.

(23) Shimoni-Livny, L.; Glusker, J. P.; Bock, C. W. *Inorg. Chem.* **1998**, *³⁷*, 1853-1867.

(24) Brown, R. S.; Hingerty, B. E.; Dewan, J. C.; Klug, A. *Nature* **1983**, *³⁰³*, 543-546.

(25) Wedekind, J. E.; McKay, D. B. *Nat. Struct. Biol.* **¹⁹⁹⁹**, *⁶*, 261- 268.

(26) Competitive extraction experiments indicate that G **1** has at least a 100:1 extraction selectivity for Pb^{+2} picrate over K⁺ picrate.

(27) Calculated for $C_{164}H_{252}N_{46}O_{54}Si_8Pb$: C, 47.32; H, 6.06; N, 15.48; Pb, 4.98. Found: C, 47.19; H, 6.18; N, 15.42; Pb, 5.01.

(28) Crystal data for (G **¹**)8'Pb(pic)2'CH3CN2.6'[CHCl3]3.6'H2O4.6: C169.81- $H_{270.06}N_{48.63}O_{58.63}Cl_{1.31}Si_8Pb$, $M\hat{W} = 4409.35$, orthorhombic, space group $P2_12_12_1$; $a = 25.5691(13)$, $b = 44.385(2)$, and $c = 83.840(4)$ Å; $\alpha = 90^\circ$, *P*2₁2₁; *a* = 25.5691(13), *b* = 44.385(2), and *c* = 83.840(4) Å; α = 90°, β = 90°; *V* = 95, 149(8) Å³; *Z* = 16, *µ*(Mo K_α) = 0.845 mm⁻¹. Data were collected at 193(2) K on a Bruker SMART1000 CCD diffr Data were collected at 193(2) K on a Bruker SMART1000 CCD diffractometer. The structure was determined by direct methods and refined using SHELXL.³⁶ The structure was refined to convergence with $R(F) = 16.19\%$, $wR(F^2) = 24.35\%$, and GOF = 1.037 for 88,730 independent reflections $[R(F) = 8.75\%, wR(F^2) = 21.40\%$ for those 54223 data with $F_0 > 4(F_0)$. Crystal data (excluding structure factors) are deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-146884. Data can be obtained free from the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax: (+44)1223-336-033. e-mail: deposit@ccdc.cam.ac.uk).

⁽¹³⁾ For reviews, see: (a) Guschlbauer, W.; Chantot, J. F.; Thiele, D. *J. Biomol. Struct. Dynam.* **¹⁹⁹⁰**, *⁸*, 491-511. (b) Gilbert, D. E.; Feigon, J. *Curr. Opin. Struct. Biol.* **¹⁹⁹⁹**, *⁹*, 305-314.

⁽¹⁴⁾ For X-ray crystal structures of DNA G-quadruplexes, see: (a) Kang, C.; Zhang, X.; Ratliff, R.; Moyzis, R.; Rich, A. *Nature* **1992**, 356 , $126-$ C.; Zhang, X.; Ratliff, R.; Moyzis, R.; Rich, A. *Nature* **¹⁹⁹²**, *³⁵⁶*, 126- 131. (b) Laughlan, G.; Murchie, A. I. H.; Norman, D. G.; Moore, M. H.; Moody, P. C. E.; Lilley, D. M. J.; Luisi, B. *Science* **¹⁹⁹⁴**, *²⁶⁵*, 520-524. (c) Phillips, K.; Dauter, Z.; Murchie, A. I. H.; Lilley, D. M. J.; Luisi, B. *J. Mol. Biology* **¹⁹⁹⁷**, *²⁷³*, 171-182.

⁽¹⁵⁾ Chantot, J.-F.; Guschlbauer, W. *FEBS Lett.* **¹⁹⁶⁹**, *⁴*, 173-176.

⁽¹⁶⁾ Chen, F. M. *Biochemistry* **¹⁹⁹²**, *³¹*, 3769-3776.

⁽¹⁷⁾ Smirnov, I.; Shafer, R. H. *J. Mol. Biol.* **²⁰⁰⁰**, *²⁹⁶*, 1-5.

⁽¹⁸⁾ These values are for the octa-coordinate cations: Shannon, R. D. *Acta Crystallogr. A* **¹⁹⁷⁶**, *³²*, 751-767.

octamers (Figure 1A). With individual G-quartets twisted 30° relative to each other, each Pb²⁺ cation coordinates eight

Figure 1. (A) Ball-and-stick representation of the lead-filled G-quadruplex. This G-quadruplex is composed of two coaxial (G $1)8 - Pb^{2+}$ octamers. The individual G-quartets, G_4 1- G_4 4, are labeled. The picrate anions are removed for clarity. (B) This spacefilling representation of the octamer $(G_1)_{8}Pb^{2+}$ shows the eight oxygen atoms in the twisted G_8 cage coordinated to Pb²⁺. Average hydrogen bond distances, $Pb^{2+}-O6$ distances, and G_4-G_4 interquartet distances for $(G_1)_8-Pb^{2+}$ units are listed in Table 1.

O6 atoms in a geometry intermediate between a cube and a square antiprism (Figure 1B). Overall, the crystal structures for the K^{+} ^{10a} and Pb²⁺ quadruplexes are quite similar, raising the issue of whether the genotoxicity of Pb^{2+} may be due to its ability to substitute for K^+ in nucleic acid structures.

Despite their similarities, the $(G_1)_{8}$ -Pb²⁺ and $(G_1)_{8}$ -K⁺ units have some key structural differences consistent with Pb^{2+} forming the more stable octamer (Table 1). First, the

Table 1. Mean Distances (\hat{A}) in the (G_1) ₈ Octamer Units from X-ray Crystal Structures of the Pb^{2+} and K^+ G-Quadruplexes*^a*,*^b*

	$(G 1)_{8}$ -Pb ²⁺	$(G 1)_{8}K^{+}$
$M - O6$ $O6 - O6$	2.66 ± 0.05 4.46 ± 0.05	2.80 ± 0.06 4.58 ± 0.06
between $(G_1)_4$ planes	3.22 ± 0.01	3.31 ± 0.03
$N1 - O6$ H-bond $N2-N7$ H-bond	$2.86 + 0.03$ $2.82 + 0.02$	$2.88 + 0.02$ $2.90 + 0.01$

 a Values for (G 1)₈-K⁺ are mean distances for the unit cell's four G-quartets, see ref 10a. The standard deviations are those observed for the set of distances in the four G-quartets. $\frac{b}{c}$ Values for (G 1)₈-Pb²⁺ are mean distances for the structure's 16 unique G-quartets. The standard deviations are those observed for the set of distances in the 16 G-quartets.

mean cation-G O6 distances are 0.14 Å shorter in $(G_1)_{8}$ - Pb^{2+} than in (G 1)₈-K⁺. Second, the mean O6-O6 diagonal, a measure of G-quartet diameter,²⁹ is 0.12 Å shorter for (G 1)₈-Pb²⁺ than for (G 1)₈-K⁺. Third, vertical separation of G-quartets in $(G 1)_{8}$ -Pb²⁺ is approximately 0.10 Å less than in $(G_1)_8$ -K⁺. In short, the divalent Pb²⁺ templates a smaller G_8 cage than does K^+ . Hydrogen bond lengths for the N2

HA-N7 pair also become shorter as the octamer cage shrinks. As described below, a more compact octamer correlates well with NMR data indicating that the N2 H_A-N7 hydrogen bonds in $(G_1)_{8}$ -Pb²⁺ are kinetically more stable than in $(G_1)_{8}$ $1)_{8}$ -K⁺.

Solution NMR Studies. We used both ²⁰⁷Pb and ¹H NMR to show that the $(G_1)_8-Pb^{2+}$ is also stable in solution. Previous heteronuclear NMR studies using $23\text{Na}^+,{}^{15}\text{NH}_4^+$, and 81 ⁸¹Tl⁺ have directly demonstrated cation binding by DNA G-quartets.³⁰⁻³² Lead-207, a spin $\frac{1}{2}$ nucleus of 22% natural abundance, has a large chemical shift range (16 000 ppm) that makes its NMR spectra exquisitely sensitive to the coordination environment.³³ After extraction of Pb^{2+} picrate by G 1, a sharp ²⁰⁷Pb NMR signal in CDCl₃ was observed at δ -3029, relative to PbMe₄ (see Supporting Information). The same 207Pb NMR peak was observed when crystals of the Pb^{2+} complex were dissolved in CDCl₃. This ²⁰⁷Pb NMR peak is strong evidence for cation coordination by G **1**, since Pb^{2+} picrate itself is insoluble in CDCl₃.

Two sets of ¹H NMR signals in a 1:1 ratio and diagnostic NOEs revealed that $(G_1)_8-Pb^{2+}$ forms in CDCl₃ by headto-tail stacking of G-quartets.³⁴ Amide N1 H (δ 11.80 and 11.41) and amino N2 H_A (δ 9.97 and 9.20) resonances were downfield shifted, as expected for hydrogen-bonded protons. These resonances were present only after Pb^{2+} extraction, again strong evidence that the cation templates the Gquartet's structure.

In the ¹H NMR spectrum of a G_8 octamer, there are two sets of amino resonances. Each set contains a hydrogenbonded resonance (N2 HA) and a non-hydrogen-bonded resonance (N2 H_B). The ¹H NMR spectra revealed that Pb^{2+} , as compared to K^+ , forms a G-quartet with kinetically stronger N2 H_A -N7 hydrogen bonds. Specifically, $C2-N2$ bond rotation was slower in $(G_1)_8-Pb^{2+}$ than in $(G_1)_8-K^+$.

All four amino NH_2 resonances in $(G 1)_{8}$ -Pb²⁺ were sharp and distinct at 25 °C (Figure 2). Coalescence of these amino signals did not occur even at 50 °C, indicating a significant barrier for C2-N2 bond rotation in $(G_1)_{8}Pb^{2+}$. In marked contrast, amino resonances for $(G_1)_{8}$ -K⁺ were broadened into the baseline at temperatures above 10 °C, indicating

Figure 2. A region of the 500 MHz 1H NMR spectra of (G **1**)8- $Pb^{2+}(pic)_2$ (5 mM) in CDCl₃ at 25 °C. The two sets of separate resonances for the N2 H_A and N2 H_B amino protons (marked by asterisks) indicate a significant barrier for C2-N2 bond rotation in $(G_1)_8-Pb^{2+}$.

⁽²⁹⁾ Strahan, G. D.; Keniry, M. A.; Shafer, R. H. *Biophys. J.* **1998**, *75*, ⁹⁶⁸-981.

much faster $C2-N2$ bond rotation in the K^+ octamer. A conservative estimate indicates that $\Delta G_{\rm c}^{\dagger}$ for C-N bond rotation is at least 1.5 kcal/mol greater for the Ph²⁺ complex rotation is at least 1.5 kcal/mol greater for the Pb^{2+} complex as compared to the K^+ complex.³⁵ These results, showing that the C-N bond rotation barrier is significantly higher for $(G_1)_8-Pb^{2+}$ relative to $(G_1)_8-K^+$, indicate that the divalent cation stabilizes the G-quartet's hydrogen bonds more than a monovalent cation.

Conclusion. Both the solid state and solution evidence show that the smaller and more highly charged Pb^{2+} cation templates a smaller G_8 octamer cage than does K^+ . This

(34) For a detailed NMR study of a "head-to-tail" dG₈-K⁺ octamer from another lipophilic nucleoside, see ref 10b.

(35) This estimate was made by assuming that the N2 H_A-H_B coalescence temperature is 50 $^{\circ}$ C for the Pb²⁺ complex (an underestimate) and 10 °C for the K⁺ complex. The equations $k_c = \pi \Delta v / \sqrt{2}$ and ΔG^{\dagger} _c = 2.3*RT_c*-
[10.32 + log *T*./k.] were used to approximate C2–N2 rotation barriers of $[10.32 + \log T_c/k_c]$ were used to approximate C2-N2 rotation barriers of $\Delta G^{\ddagger}_{\rm c} = 13.5$ kcal/mol for the Pb²⁺ complex and $\Delta G^{\ddagger}_{\rm c} = 12.0$ kcal/mol for the K⁺ complex. the K^+ complex.

(36) Sheldrick, G. M. *SHELXL-93 Program for the Refinement of Crystal* Structures; University of Göttingen: Germany, 1993.

tighter coordination geometry kinetically stabilizes the Gquartet's $N2$ H_A $-N7$ hydrogen bonds. These experimental results, including data from the first crystal structure of a G-quadruplex bound to a divalent cation, are consistent with calculations that predict the polarization enhancement of DNA base pairing upon cation binding.¹⁹⁻²¹ While it remains to be seen if Pb^{2+} binding to DNA G-quartets has a role in the cause and effect of lead's genotoxicity, these studies with G 1 provide a firm rationale for why Pb^{2+} binds more tightly to a G-quadruplex than does K^+ .

Acknowledgment. We thank the Department of Energy for support, Steve Rokita and Bryan Eichhorn for suggestions, and Yiu-fai Lam for his NMR expertise. J.D. thanks the Dreyfus Foundation for a Teacher-Scholar Award.

Supporting Information Available: Crystallographic tables, final coordinates and thermal parameters, selected bond lengths and angles, and ¹H and ²⁰⁷Pb NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0065120

⁽³⁰⁾ Deng, H.; Braunlin, W. H. *J. Mol. Biol.* **¹⁹⁹⁶**, *²⁵⁵*, 476-483.

⁽³¹⁾ Hud, N. V.; Schultze, P.; Feigon, J. *J. Am. Chem. Soc.* **1998**, *120*, ⁶⁴⁰³-6404.

⁽³²⁾ Basu, S.; Szewczak, A. A.; Cocco, M.; Strobel, S. A. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 3240-3241.

⁽³³⁾ Claudio, E. S.; ter Horst, M. A.; Forde, C. E.; Stern, C. L.; Zart, M. K.; Godwin, H. A. *Inorg. Chem.* **²⁰⁰⁰**, *³⁹*, 1391-1397.