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The lipophilic nucleoside, G 1, extracts Pb?" picrate from water into organic solvents to give structures based on the hydrogen-bonded

G-quartet. Crystal structures indicate important differences between (G 1)g-

Pb2+ and (G 1)s-K™. The divalent Pb?" templates a smaller Gg cage

than does K*, as judged by the M—-06 bond length, 06—06 diagonal distance, and inter-tetramer separation. The more compact Pb%™ octamer

correlates with NMR data indicating that N2-N7 hydrogen bonds in (G 1)-P

b2t are kinetically more stable than in (G 1)g-K*.

With the increasing activity in supramolecular chemistry,

triplex.2 and tetraple¥*® nucleic acids. Both Gottarelli's

nucleobases have been used to construct some interestingroup and our group have been studying the cation-templated

and functional noncovalent assembRke%.In addition to

self-association of lipophilic guanosine derivativés!?

making new supramolecular architectures, lipophilic nucleo- These compounds form self-assembled ionophores that bind
bases also serve as valuable models for better understandingations with affinity and selectivity. In addition to represent-

the factors that control structure and dynamics in duplex,
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ing a new approach toward ion coordination in organic calculated to be greater for divalent cations than for mono-
solvents, our studies should also provide insight into the valent cationg® Such polarization effects have been con-
structural properties of higher-ordered nucleic acid ag- sidered when explaining the G-quartet's monovalent cation

gregates. Herein, we report solid-state and solution evidenceselectivity?*

for complexation of Pb™ by the lipophilic guanosine
analogue G1. The resulting (Gl)-P?™ octamer is a
sandwich of two hydrogen-bonded G-quartets (Scheme 1).

Scheme 1. Formation of (G1)s-P?*
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The G-quartet is templated and stabilized by catiGns.
G-rich DNA, contiguous G-quartets stack to give structures
known as G-quadruplexé$.In addition to an affinity for
the monovalent K and Na, the G-quartet also binds divalent
cations such as Baand Stt.1>1¢Earlier this year, Smirnov
and Shafer reported that Plis significantly better than K
at inducing G-quartet structure in a DNA oligonucleotide.
Since PB* (r = 1.29 A) has an ionic radius similar to but
smaller than that of K (r = 1.51 A)18 P?* should fit into
the G cage formed by two stacked G-quartets. It is also
reasonable that divalent metal ion coordination might further
stabilize the G-quartet's hydrogen bonds. For example,
calculations predict that cation coordination to G strengthens
hydrogen bonds in G—C and G—G base p&irshis
polarization enhancement of hydrogen bond strength is
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In addition to providing general insight into G-quartet
cation interactions, studying Pbbinding to nucleobases may
result in a better understanding of the molecular basis for
lead’s genotoxicity? While lead’s coordination chemistry
is well understood? there are few structural details regarding
binding of PB* to nucleic acids. X-ray crystallography has
shown that tRNA and RNA leadzymes have specifi@'Pb
binding sites that utilize both nucleobase and phosphate
ligands?42° Shafer’s finding that P promotes folding of
a DNA G-quadrupleX focused our attention on the inter-
action of PB* with the lipophilic G1.

The nucleoside @ is an excellent model compound for
obtaining molecular level details about G-quartets. We
recently reported a G-quadruplex crystal structure formed
from G 1 and K' picrate’®@The G-quadruplex was composed
of two coaxial (G1)s-K* octamers with K cations sand-
wiched between G-quartet layers. We have now locatéd Pb
cations within a similar G-quadruplex. Our current solid-
state and solution data confirm that?Pls better than K
at stabilizing the G-quadruplex.

Solid State Structure.The lipophilic G1 extracted Ph"
picrate into CDC from water containing a 1:2 molar ratio
of PbCh and K" picrate?® Integration of'H NMR signals
for G 1 and picrate indicated an octameric stoichiometry.
Solvent evaporation gave a solid whose elemental analysis
was consistent with (&)s-P?(pic)..?” Single crystals, from
CH3;CN/CHCE, had unit cell dimensions that were macro-
molecular: a = 25.5691(13) Ab = 44.385(2) A, anct =
83.840(4) A28 This cell contained four G-quadruplexes,
representing over 4500 non-hydrogen atoms. Each G-
quadruplex was formed from two coaxial (G)s-P?*™
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octamers (Figure 1A). With individual G-quartets twisted Ha—N7 pair also become shorter as the octamer cage shrinks.
30° relative to each other, eachPlzation coordinates eight ~ As described below, a more compact octamer correlates well
with NMR data indicating that the N2 A+N7 hydrogen

] bonds in (G1)s-Pt** are kinetically more stable than in (G
1)s-K™.

Solution NMR Studies.We used bot°Pb andtH NMR
to show that the (Gl)s-Pl?* is also stable in solution.
Previous heteronuclear NMR studies usifiga™,'>NH,*, and
8ITI* have directly demonstrated cation binding by DNA
G-quartets®—3?ead-207, a spi#/, nucleus of 22% natural
abundance, has a large chemical shift range (16 000 ppm)
that makes its NMR spectra exquisitely sensitive to the
coordination environmerft After extraction of PB" picrate
by G 1, a sharp®Ph NMR signal in CDG was observed
ato —3029, relative to PbMgsee Supporting Information).
Figure 1. (A) Ball-and-stick representation of the lead-filled The same&®Pb NMR peak was observed when crystals of
G-quadruplex. This G-quadruplex is composed of two coaxial (G the PB* complex were dissolved in CDEThis2’Ph NMR

L)g-P?* octamers. The individual G-quartets, G—G; 4, are peak is strong evidence for cation coordination bg,Gince
labeled. The picrate anions are removed for clarity. (B) This space- PE?* picrate itself is insoluble in CDGI

filling representation of the octamer (Qs-Pl?* shows the eight

oxygen atoms in the twisteds®age coordinated to Ph Average Two sets offH NMR signals in a 1:1 ratio and diagnostic
hydrogen bond distances, Pb-06 distances, and &G, inter- NOESs revealed that (G)s-Pl?* forms in CDC} by head-
quartet distances for (G)s-PE?t units are listed in Table 1. to-tail stacking of G-quartefé. Amide N1 H ¢ 11.80 and

11.41) and amino N2 k(6 9.97 and 9.20) resonances were

. . . downfield shifted, as expected for hydrogen-bonded protons.
06 atoms in a geometry intermediate between a cube and 3rhese resonances were present only aftér Rltraction,

square antgprism (Figure 1B). Overall, the crystal structures again strong evidence that the cation templates the G-
+ 10a -+ ; imi i
for the K™ 1%2and PB' quadruplexes are quite similar, raising quartet's structure.

_the |s_sge of whether the gen_otoxmlty onPpnay be due to In the IH NMR spectrum of a @octamer, there are two
its ability to substitute for K in nucleic acid structures. . .
sets of amino resonances. Each set contains a hydrogen-

; U oot o
Despite their similarities, the (@)s-Pb™* and (GL)sK bonded resonance (N2aHand a non-hydrogen-bonded

units have some key structural differences consistent with 1
Pt forming the more stable octamer (Table 1). First, the resonance (N2 k). The*H NMR spectra revegled _that_?f’b
as compared to K forms a G-quartet with kinetically

stronger N2 H-N7 hydrogen bonds. Specifically, A2
_ bond rotation was slower in (G)g-P?* than in (G1)g-K™.

Table 1. Mean Distances (A) in the (G d)Dctamer Units All four amino NH, resonances in (®)s-Pk?+ were sharp
from X-ray Crystal Structures of the Pband K~ and distinct at 23C (Figure 2). Coalescence of these amino
G-Quadruplexes signals did not occur even at 3@, indicating a significant
(G 1)s-Pb?* (G 1)g-K* barrier for C2-N2 bond rotation in (Gl)s-P?*. In marked
M—06 266 -+ 0.05 280 + 0.06 contrast, amino resonances for (s-K* were broadened
06—06 4.46 + 0.05 458 + 0.06 into the baseline at temperatures above°@) indicating
between (G 1), planes 3.22£0.01 3.31 £0.03
N1-06 H-bond 2.86 + 0.03 2.88 + 0.02
N2—N7 H-bond 2.82 +0.02 2.90 + 0.01

aValues for (G 1)s-K* are mean distances for the unit cell's four
G-quartets, see ref 10a. The standard deviations are those observed for the
set of distances in the four G-quartetd/alues for (G1)s-P?™ are mean
distances for the structure’s 16 unique G-quartets. The standard deviations
are those observed for the set of distances in the 16 G-quartets.

+ N2 Hp ~f———

*N2H,
+ N2 H,
+ N2 Hg

mean cation—G O6 distances are 0.14 A shorter il }s
P than in (G1)g-K*. Second, the mean G&6 diagonal,
a measure of G-quartet diame#is 0.12 A shorter for (G 12 10 8 & :
1)-PE?* than for (G1)e-K*. Third, vertical separation of & 3(ppm)

_G-quartets in (Q)s-PE*is E_;\pprOXImater 0.10 Aless than Figure 2. A region of the 500 MHZH NMR spectra of (Gl)g-

in (G 1)¢-K™. In short, the divalent Pt templates a smaller  pg+(pic), (5 mM) in CDCk at 25°C. The two sets of separate
Gg cage than does K Hydrogen bond lengths for the N2  resonances for the N2 and N2 H; amino protons (marked by
asterisks) indicate a significant barrier for €82 bond rotation

(29) Strahan, G. D.; Keniry, M. A.; Shafer, R. Biophys. J1998,75, in (G 1)e-PE?".
968—981.
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much faster C2N2 bond rotation in the K octamer. A
conservative estimate indicates thaG*. for C—N bond
rotation is at least 1.5 kcal/mol greater for thePbomplex
as compared to the 'Kcomplex3® These results, showing
that the C—N bond rotation barrier is significantly higher
for (G 1)s-PB** relative to (G 1)e-K*, indicate that the

tighter coordination geometry kinetically stabilizes the G-

quartet’s N2 H—N7 hydrogen bonds. These experimental

results, including data from the first crystal structure of a

G-quadruplex bound to a divalent cation, are consistent with
calculations that predict the polarization enhancement of
DNA base pairing upon cation bindifg:>* While it remains

divalent cation stabilizes the G-quartet's hydrogen bonds i, pe seen if P binding to DNA G-quartets has a role in

more than a monovalent cation.

Conclusion. Both the solid state and solution evidence
show that the smaller and more highly charged'Riation
templates a smaller Goctamer cage than doestKThis
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(35) This estimate was made by assuming that the W2 s coales-
cence temperature is 5C for the PB™ complex (an underestimate) and
10°C for the Kt complex. The equationg = 7Av/v/2 andAGH, = 2.3R -
[10.32+ log T/ke] were used to approximate €N2 rotation barriers of
AG¥. = 13.5 kcal/mol for the Pb™ complex andAG*. = 12.0 kcal/mol for
the K" complex.

(36) Sheldrick, G. MSHELXL-93 Program for the Refinement of Crystal
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the cause and effect of lead’s genotoxicity, these studies with
G 1 provide a firm rationale for why Pl binds more tightly
to a G-quadruplex than does'™K
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